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Thermal Helium Clusters at 3.2 Kelvin in 
Classical and Semiclassical Simulations 
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The thermodynamic stability of 4He4_13 at 3.2 K is investigated with the classical 
Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) 
method, and with the semiclassical all-order many-body method. In the all- 
order many-body simulation the dipole dipole approximation including short- 
range correction is used. The resulting stability plots are discussed and related 
to recent TOF experiments by Stephens and King. It is found that with classical 
Monte Carlo of course the characteristics of the measured mass spectrum can- 
not be resolved. With PIMC, switching on more and more quantum mechanics 
by raising the number of virtual time steps results in more structure in the 
stability plot, but this did not lead to sufficient agreement with the TOF 
experiment. Only the all-order many-body method resolved the characteristic 
structures of the measured mass spectrum, including magic numbers. The 
result shows the influence of quantum statistics and quantum mechanics on the 
stability of small neutral helium clusters. 
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The most  c o m m o n  model ing methods applied to finite-temperature atomic 

clusters are Monte  Carlo, molecular  dynamics,  and combina t ions  of both. 
Little work has been done on critically compar ing  those s imulat ion tech- 
niques, i.e., compar ing  the relevance of physical assumptions  of a part icular  
system with respect to the s imulat ion model  that is used. Thus, in this 

paper  three Monte  Carlo s imulat ions of 4Hen clusters (n is the n u m b e r  of 
a toms)  are studied. The results of classical Mon te  Carlo simulation,  the 
semiclassical path integral  Monte  Carlo ( P I M C )  s imulat ion based on the 
q u a n t u m  statistical mot ion  of the particles, and the semiclassical all-order 
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many-body Monte-Carlo simulation based on the quantum mechanical 
many-body dispersion interaction are discussed. 

The simulation of the quantum statistical motion of 4Hen clusters has 
been carried out with the path integral Monte Carlo (PIMC) method ~1) 
with 257 virtual time steps. The simulation of classical 4He,, clusters run 
with the trivial application of the PIMC algorithm, i.e., with zero virtual 
time steps. As a model potential for both the classical and the PIMC 
simulation, the two-body Lennard-Jones (12, 6) potential is used, 

= = - ( 1 )  

i > j  

with the LJ parameters a = 2.556 ~ and e/kB = 10.22 K. 
The simulation of many-body interactions in 4He, clusters was carried 

out with the zero-virtual-timestep PIMC and a dispersion many-body 
correction. It enters with the interaction of the static atomic polarizabilities 
~=~( r )  of the helium atoms and the resulting effective atomic 
polarizability ~e~, respectively. The atomic polarizability is determined by 
a 4He 2 two-body exchange calculation of Heller et  aL (4) It was fitted to the 
data by Heller et  al. with Dacre's polarizability function ~3) 

~(r  ) = A 6  r - 6  - -  to exp[ - (r - a v  ) / r , ]  (2) 

The resulting coefficients are A 6 = - 4 0 0 . 0 6 a ~ ,  to =0.3237ao 3, av = 3.10ao, 
and rt = 0.50ao (r in a.u.). 

The dipole-dipole many-body interaction potential, i.e., including 
many-body dispersion, is 

U = ULj + Udisp (3) 

with the many-body dispersion energy (2) 

gdisp = --( 1 -~2ff~2j ULJ (4) 

It is assumed that only the atomic dipole polarization charges, i.e., the 
atomic dipolar polarizability e, contributes to the dispersion interaction. 
With regard to the results this approximation seems to be sufficient to 
resolve relative stabilities and magic numbers of 4He4 13 clusters. 

As in the previous paper, (2) the dipole-dipole many-body long-range 
interaction part enters via the effective polarizability of the polarization 
model 

~,~ = 1 Tr (~(1 - c~G) - 1 ) (5) 
on 
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Essentially ~eff is the trace of the Metropolis Monte Carlo averaged ((- . - ) )  
inverted 3n x 3n dipole propagator G with matrix elements 

G~j- I f ( ~ ' ~  (6) 
st 3 1 -  3 s, 2 

r,7 ', I%1 } 

where s, t are the coordinate indices and i, j the atom indices, respectively. 
Note that the n-body interaction is calculated before averaging. Thus, eefr 
is the mean value calculated with the exact n-body dipole interaction, and 
not calculated with a mean (dipole) field [1/3n)] Tr < ~(1 - e G ) ) - l .  

RESULTS AND DISCUSSION 

The classical, the PIMC, and the all order many-body simulations of 
clusters were carried out at fixed temperature of 3.2 K and run over some 
10 4 iterations. The resulting spectrum of binding energies for 4He, is 
compared with the mass spectrum by Stephens and King, (5) i.e., the 
measured relative frequency of 4He, clusters. 

Figure 1 shows the binding energies of 4Hen clusters calculated with 
the classical Monte Carlo simulation of helium atoms and the LJ(12, 6) 
potential. Assuming that high cluster binding energies are responsible for 
the occurrence of magic numbers in cluster beam mass spectroscopy, the 
classical simulation of 4He4_13 shows magic numbers for 4He8 and 4Hem, 
which do not correspond to the measured magic numbers 7 and 10. (5) 
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Fig. 1. Binding energies of 4He, clusters at 3.2 K calculated with ((3) classical Monte Carlo 
simulation, ([]) PIMC, i.e., treating helium atoms as quantum statistical point particles, and 
( ~ )  with the all-order n-body (n is the cluster size) Monte Carlo simulation in the dipole dis- 
persion approximation including short-range corrections, i.e., the helium atoms are considered 
as polarizable point particles with quantum mechanical dipolar n-body dispersion interaction. 
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The semiclassical simulation of 4Hen with PIMC and the LJ(12, 6) 
potential is used with an optimized number of virtual time steps. Among 
some runs with different numbers of virtual time steps with up to 1025 
steps, it was found that a simulation with 257 virtual time steps minimizes 
the variances of both the potential and the kinetic energy. The calculated 
high binding energy for 4He7 and the relative binding energies up to 4He9 
correlate with the mass spectrum by ref. 5, but for greater 4Hen clusters 
PIMC failed, too. 

With the same number of iterations the semiclassical simulation of 
4He4_13 clusters in the polarization model, i.e., with a many-body disper- 
sion interaction, shows good agreement of binding energies with the 4He n 
mass spectrum by Stephens and King. (5) In particular, the magic numbers 
7 and 10 and the relative unstability of 4He9 and 4He12 could be resolved. 

C O N C L U S I O N  

In conclusion, 4He4 13 clusters have been simulated at 3.2 K with 
classical Monte Carlo, with path integral Monte Carlo (PIMC), and with 
the all order many-body Monte Carlo procedures (polarization model). (2) 
The calculated 4He4_13 binding energies obtained from simulations were 
compared to the TOF experiments by Stephens and King, (5/assuming that 
the cluster binding energies correlate with the cluster-size frequency in 
cluster beam TOF experiments. With classical Monte Carlo and PIMC the 
helium atoms could interact via the two-body Lennard-Jones (12, 6) poten- 
tial. In the all-order many-body Monte Carlo regime the Lennard-Jones 
potential has been modified by a static dipole dispersion interaction term 
that is calculated from the n-body (n is the cluster size) dipole propagator. 
The classical simulation with LJ(12,6) failed in describing certain 
stabilities of 4Hen clusters, for the Lennard-Jones potential does not include 
any quantum corrections known to be important for atomic systems with 
low-mass atoms and systems with low temperature. Although the binding 
energies calculated with the path integral Monte Carlo model, i.e., treating 
the helium atoms as quantum statistical point particles, have shown struc- 
ture which correlates more with the TOF experiment, the model was 
unable to resolve details of the spectrum. Only the all-order many-body 
simulation within the polarization model regime in the dipole approxima- 
tion with short-range corrections resolved the characteristic structures of 
the TOF mass spectrum. From the results presented here, we conclude that 
the stabilization of 4He n clusters seems to be more affected by long-range 
many-body processes (which are quantum mechanical in origin) than by 
quantum statistical motion of their atoms simulated with PIMC. Further 
investigations on 3Hen and 4Hen clusters which in addition include spin 
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statistics will show whether collective long-range interactions have more 
influence on the stability of helium clusters than  the quantum statistics of 
their atoms. Also, it might be interesting to see the cluster size for which 
quantum statistical correlations become important.  
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